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Abstract
We investigate a polyacetylene ring in an axially symmetric, static electric
field using a modification of the Su–Schrieffer–Heeger (SSH) Hamiltonian
for a polyacetylene chain. An effective gauge potential of the single-electron
Hamiltonian due to spin–field interaction is obtained and it results in a Fröhlich-
type superconductivity equivalent to the effect of a travelling lattice wave. The
total energy as well as the persistent current density are shown to be periodic
functions of the flux of the gauge field embraced by the polyacetylene ring.

Much attention in the study of mesoscopic systems has been concentrated upon topological
effects in multiply connected geometries. As is well known, the Aharonov–Bohm (AB) effect
leads to a number of remarkable interference phenomena in mesoscopic systems, especially in
a ring [1]. A typical example of the phenomena first observed by Büttiker et al is the oscillation
of the persistent current in mesoscopic rings threaded by a magnetic flux [1,2] which leads to a
relative phase in the wave function of a charged particle due to the U(1) gauge theory. Since the
realization of the Berry phase is characterized by a geometric meaning, it has been predicted that
analogous interference effects can be induced by the geometric phases which originate from
the interplay between an electron’s spin and orbital degrees of freedom. Loss et al studied
the persistent current in a one-dimensional ring in the presence of a static inhomogeneous
magnetic field, considering the coupling between spin and orbital motion due to the Zeeman
interaction [3]. Using the imaginary-time path-integral method, they showed that the spin
wave function accumulates a Berry phase which leads to a persistent equilibrium current [3].
The Aharonov–Casher (AC) effect in mesoscopic systems has also been of great interest, since
it specifically includes the spin degree of freedom. Meir et al showed that spin–orbit (SO)
interaction in one-dimensional rings results in an effective magnetic flux [4]. Mathur and Stone
then pointed out that the observable phenomena induced by SO interactions are essentially the
manifestation of the AC effect and proposed an experiment to observe the AC oscillation of
the conductance in semiconductor samples [5]. Subsequently Balatsky and Altshuler [6] and
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Choi [7] studied the persistent current related to the AC effect. Inspired by these studies
on textured rings, various authors have analysed the AC effect in connection with the spin
geometric phase. Aronov and Lyanda-Geller considered the spin evolution in conduction rings,
and found that SO interaction results in a spin–orbit Berry phase which plays an interesting
role in the transmission probability [8]. However, in real systems, the interactions between
electrons, lateral dimensions, impurities and the couplings of spins complicate the situation.
Cheung et al have systematically studied the persistent currents in ideal, one-dimensional
metallic rings, including temperature and impurity effects [9]. Experimental observations of
persistent currents in an ensemble of ∼107 Cu rings [2], in single gold rings [10] and in a
single loop in a GaAs heterojunction [11] have also been reported.

It has long been known that the interaction between electrons and the field of lattice
displacements may be responsible for superconductivity, known as Fröhlich superconductivity
[12]. The average electron momentum corresponds to that of a travelling lattice wave which
results in a persistent current in a one-dimensional lattice with a periodic boundary condition,
i.e. a ring. The periodic lattice displacement gives rise to an energy gap in the single-electron
spectrum with all levels below the gap occupied and all those above it empty. Fröhlich
suggested that if, when the electrons were displaced in k-space (see figure 1) so as to give
a current flow, the gaps follow the displaced Fermi surface, superconductive behaviour might
result, and this is called fluctuation superconductivity or paraconductivity. The existence
of the energy gap eliminates the possibility of elastic scattering, provided that the velocity
of the travelling lattice wave is sufficiently small. Therefore at low temperature an electric
current can exist without resistance. Originally, Fröhlich’s mechanism of superconductivity,
because of the restriction to one dimension, was regarded as a mathematical model without
real physical significance. However, Bardeen pointed out that [13] it was Fröhlich’s one-
dimensional model rather than a BCS type of pairing that was able to account for the origin of
the superconductivity in the experiment of Coleman et al [14] who observed an extraordinary
increase in conductivity just above the Peierls soft-mode instability in a one-dimensional
organic solid. Fröhlich’s theory was originally based on a nearly free-electron model and
applied only to T = 0 K. This concept, i.e. the superconductivity in one-dimensional systems
resulting from a coupling between the electrons and a travelling macroscopically occupied
lattice wave, was further developed by Allender, Bray and Bardeen [15]. In a superfluid
there must be macroscopic occupation of a quantum state that picks out a unique reference
frame describing the velocity vs of the superfluid [15]. Associated with each value of vs
there are a whole set of elementary excitations of the system. When excitations come into
equilibrium with the rest frame, a current js(vs) remains. In superfluid helium the macroscopic
occupation is the Bose condensate of the momentum state and it is the common momentum
of pairs that defines vs in a superconductor on the basis of pairing. In the Fröhlich model, vs
is determined by the velocity of the macroscopically occupied lattice wave which produces
energy gaps at boundaries of the displaced Fermi surface [15] (see figure 1(b)). It was reported
in reference [16] that the macroscopic velocity vs can be induced by the AB magnetic flux
in a polyacetylene ring, where the travelling lattice wave is pinned down due to dimerization
and the persistent current is solely due to the AB phase which leads to a collective shift of the
electron momentum equivalent to that of a travelling lattice wave. Motivated by the formal
duality between AB and AC effects (which however have very different physical origins), we
in this paper investigate the AC phase which, we will see, also induces persistent current in a
polyacetylene ring.

Polyacetylene is the simplest linearly conjugated polymer. The thermodynamically stable
trans-configuration is sketched in figure 2, illustrating the σ -bonding and the π -bonding in the
x–y plane. A tight-binding model is suitable for describing the π -electrons in a polyacetylene
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Figure 1. (a) The half-filled tight-binding band which has undergone a Peierls transition. There is
no current (vs = 0). (b) As (a), except that vs �= 0.
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Figure 2. The trans-configuration of (CH)x .

chain. A full theory has been given by Su, Schrieffer and Heeger (SSH) [17]. It is certainly
interesting to investigate the Fröhlich-like superconductivity related to the AC effect in the
context of the modified SSH model. We consider a one-dimensional polyacetylene ring of N
electrons in which there is one conduction electron (π -electron) per site, with spacing d. An
infinitely long line charge is assumed to be set along the axis of the ring, i.e. the z-axis shown
in figure 3. The AC set-up consists of the spin of the π -electron and the electric field of the line
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Figure 3. A π -electron with arbitrary polarization of spin �S in the electric field of a line charge
along the z-direction.

charge. The Lagrangian for the π -electron with arbitrary polarization of spin can be written
in the nonrelativistic limit as

L = m

2

.

�x2 +
µ

c

.

�x · (�S × �E)−
N∑
n=1

v(x − Rn) (1)

where m and �x are the mass and position of the electron, respectively. �E = ERêr represents
the radial static electric field of the line charge with ER = 2ρ/R where ρ denotes the charge
per unit length on the line and R is the radius of the polyacetylene ring. µ = gµB with
µB = e�/(2mc) being the Bohr magneton. g is the spin g-factor which is taken to be 2 here.
�S is then the dimensionless spin operator. v(x − Rn) denotes the potential created by the
nth ion with coordinate Rn. The physical significance of the second term in the Lagrangian
equation (1) is clear, since a moving magnetic moment µ�S is equivalent to an electric dipole

moment (µ/c)
.

�x × �S. Since we consider a one-dimensional ring, the trivial potential energy
of a charged particle in the electric field makes no contribution in the following investigation.
The Hamiltonian is

h = 1

2m

(
�P − µ

c
�S × �E

)2

+
N∑
n=1

v(x − Rn) (2)

where �P is the momentum. For the π -electron confined on the ring, the Hamiltonian (2) is
obtained in cylindrical coordinates as

h = 1

2m

(
−ih̄

1

R

d

dϕ
− µ

c
ERSz

)2

+

(
µ

c
ER

)2

(�n · �S)2 +
N∑
n=1

v(x − Rn) (3)

where

�n = (sin ϕ,− cosϕ, 0) (4)

is a unit vector shown in figure 3. The azimuthal angle ϕ is obviously related to the coordinate
x by x = Rϕ. Considering a tight-binding model with Wannier function φl per site l such that[ �P 2

2m
+ ν(x − Rl)

]
φl = εφl (5)

we construct the wave function

ψs(x) = ξs ⊗ ψ(x) (6)
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which is the product of the spinor

ξs = 1√
2
(|�n〉 + |−�n〉) (7)

and the spatial wave function

ψ(x) =
N∑
l=1

clφl(x). (8)

The |±�n〉 denote the spin coherent states defined by (�S · �n)|±�n〉 = ± 1
2 |±�n〉. Taking into

account the unit vector �n expressed in equation (4), we have the spin coherent states written
explicitly as

|�n〉 =
√

2

2
(e− 1

2 iϕ|+〉 + e
1
2 iϕ|−〉)

|−�n〉 =
√

2

2
(e− 1

2 iϕ|+〉 − e
1
2 iϕ|−〉)

(9)

where the |±〉 are the usual spin eigenstates of Sz, Sz|±〉 = ± 1
2 |±〉.

Averaging over the spin state ξs , we obtain the effective Hamiltonian as

heff = 1

2m

(
�P +

e

c
�A
)2

+
N∑
n=1

v(x − Rn) (10)

where

�A ≡ c

2e

(
h̄

1

R
+
µ

c
ER

)
êϕ

is formally equivalent to the vector potential of a magnetic flux with respect to a charged
particle with charge e as shown in reference [16]. êϕ denotes the unit vector in the azimuthal
direction. The Hamiltonian operator equation (10) is formally the same as that in reference [16]
where the π -electron is in the gauge field of a magnetic flux. We therefore confirm the duality
between AB and AC effects by our model study. Following reference [16], we assume that
ψ(x) is the eigenfunction of heff , such that

heff ψ(x) = E(k)ψ(x) (11)

and satisfies the usual periodic boundary condition

ψ(x + Nd) = ψ(x). (12)

Using a unitary transformation

ψ ′(x) = exp

[
i

1

2h̄

(
h̄

1

R
+
µ

c
ER

)
x

]
ψ(x) = exp

[
i
*AC

Nd*0
2πx

]
ψ(x) (13)

the transformed effective Hamiltonian becomes

h′
eff =

�P 2

2m
+

N∑
n=1

v(x − Rn) (14)

where

*AC =
∮

�A · d�l = c

2e
Nd

(
h̄

1

R
+
µ

c
ER

)
(15)

is the effective flux of the gauge potential embraced by the ring which we may call the AC flux.
*0 = ch/e is the quantum unit of the flux for a single electron. The stationary schrödinger
equation is seen to be

h′
eff ψ

′ = E(k)ψ ′. (16)
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The energy eigenvalueE(k) and the eigenfunction ψ(x) are determined by both equation (11)
and the usual periodic boundary condition, equation (12). Correspondingly ψ ′(x) has a non-
trivial boundary condition

ψ ′(x + Nd) = exp

[
i 2π

*AC

*0

]
ψ ′(x). (17)

The vector potential is eliminated in the Hamiltonian h′
eff and the energy spectrum E(k) is

then determined by equation (16) along with the nontrivial boundary condition of the wave-
function, equation (17). The reason that we make use of the unitary transformation equ-
ation (13) to calculate the energy spectrum is that we can thereby adopt Dirac’s arguments [18]
to demonstrate the periodicity of the spectrum with respect to the magnetic flux following Byers
and Yang [19]. The situation is exactly the same as that in the analysis of the magnetic flux
quantization in superconductivity. Under the unitary transformation, the kinetic momentum
in the Hamiltonian (heff ) equation (10):

�Pkin = �P +
e

c
�A

becomes

�P ′
kin = �P

in the Hamiltonian (h′
eff ) equation (14), where �P denotes the canonical momentum.

Following the argument of Byers and Yang in their famous paper [19] explaining the
magnetic flux quantization in superconductors, we immediately conclude that the eigenvalue
E(k) should be a periodic function of the AC flux *AC and an even function of *AC . When
*AC/*0 equals an integer, the boundary condition of equation (17) coincides with the usual
one, i.e. equation (12), and then the line charge would not lead to any observable effect, similar
to the AB case described in reference [16] where the magnetic flux becomes a Dirac string.
Using equation (15) it is easy to see that the charge per unit length for the line charge resulting
in no observable effect is equal to

ρ =
(
n +

1

2

)
mc2

e

where n is an integer. The AC partner of the quantum unit of magnetic flux*0 in reference [16],
i.e. in the AB case, is seen to be ρ0 = mc2/e.

To see how the eigenvalue E(k) depends on the AC flux, we evaluate the single-electron
energy band with a small variation of the AC flux from integral units of *0. The second-
quantization Hamiltonian of the electron can be written as

H =
∫
ψ+(x)heff ψ(x) dx =

∫
ψ ′+(x)h′

eff ψ
′(x) dx

= −
∑
l

[t0 − α(ul+1 − ul)](a
+
l+1al + a+

l al+1) + iMvf
∑
l

(a+
l+1al − a+

l al+1)

+
1

2
mv2

f

∑
l

a+
l al . (18)

The first sum is the usual result in the tight-binding approximation and is seen to be the
SSH Hamiltonian for electrons. t0 denotes the hopping integral in the ion equilibrium position,
namely the undimerized chain, while α is the electron–phonon coupling constant. The second
and the third sum come from the contribution of the AC flux, where

M ≡ i
∫
ϕ∗
l−1

�Pϕl dx
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is the dipole matrix element which is assumed to be the same for all l and

vf = 2h̄π

mNd

*AC

*0

is regarded as a macroscopic velocity of electrons induced by AC flux, i.e.,

vs = vf .

For the perfectly dimerized chain, the displacement configuration of the lattice may be
written as un = (−1)nu. Following SSH we separate the an into those of odd (ano ) and even
(ane ) indices and introduce the Fourier transforms

ano = 1√
N

∑
k

(cvk + cck)e
−i 2πnokd

ane = 1√
N

∑
k

(cvk − cck)e
−i 2πnekd

(19)

where |k| � 1/(4d); the superscripts v and c denote the valence and conduction bands
respectively. The Hamiltonian (10) can be expressed in the k-representation:

H =
∑
k

E0(k)(c
v+
k c

v
k − cc+k c

c
k) + i

∑
k

4(k)(cv+
k c

c
k − cc+k c

v
k )

+ 2vfM
∑
k

sin(2πkd)(cv+
k c

c
k − cc+k c

v
k ) +

1

2
mv2

f

∑
k

(cv+
k c

v
k + cc+k c

c
k) (20)

where
E0 = −2t0 cos(2πkd)

4(k) = 4αu sin(2πkd).
(21)

In order to diagonalize the Hamiltonian (20), we make the following Bogoliubov trans-
formation:

avk = −iαkc
v
k + βkc

c
k

ack = α∗
k c

v
k + iβkc

c
k

(22)

with |αk|2 + |βk|2 = 1. The diagonalized form is

H = −
∑
k

E(k)(av+
k a

v
k − ac+k a

c
k) +

1

2
mv2

f

∑
k

(av+
k a

v
k + ac+k a

c
k) (23)

where

E(k) =
√
E′

0(k)
2 + 4(k)2

E′
0(k) = E0(k) + 2vfM sin 2πkd.

(24)

A real solution for the transformation coefficient in equation (22) is seen to be

αk = 1√
2

√
1 +

E′
0(k)

E(k)

βk = − 1√
2

k

|k|

√
1 − E′

0(k)

E(k)
.

(25)

At zero temperature the valence band is occupied while the conduction band is empty.
The total energy is obtained as

U = −2
1/4d∑

k=−1/4d

√
E′

0(k)
2 + 42(k) +

1

2
Nmv2

f . (26)
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Under the condition
vfM

t0
� 2αu

t0
� 1

the first term can be approximated up to quadratic dependence on the small variation of the AC
flux away from an integer value of *0. Since the flux *AC whenever it becomes an integral
multiple of *0 will not affect the energy eigenvalue E(k), i.e. vf vanishes, the total energy
would be a minimum, as we see from equation (26). The total energy of the occupied valence
band has an infinite number of minima wherever the magnetic flux is an integral multiple of
*0. The AC flux dependence of the energy is shown in figure 4.

-2 -1 0 1 2
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φ
AC

/φ
0

 

Figure 4. The variation of the total energy as a function of the AC flux.

To obtain the macroscopic momentum shift, namely the displacement of electrons in k-
space, we first have to find the electron wave function for the single-electron Hamiltonian h′

eff .
Such a wave function which leads to the valence band Ev = −E(k) is

ψ ′(x) = exp(i[mvf /h̄]x)√
N

(
αk

∑
n

ei 2πkndφn + iβk
∑
n

ei 2πknd(−1)nφn

)
. (27)

The expectation value of the kinetic momentum 〈 �Pkin〉 can be calculated with the above wave
function:

〈 �Pkin〉 = 〈ψ | �P +
e

c
�A|ψ〉 = 〈ψ ′| �P |ψ ′〉 = mvf +

2ME′
0(k)

E(k)
sin(2πkd) (28)

where the contribution from the second term is negligible when summed over k. The persistent
current density due to a small deviation of the AC flux from an integral number of *0 is seen
to be

j = nevf (29)

where n = 1/d is the electron density. It is seen that the current density depends on the AC
flux periodically and is discontinuous at half-integral values of*0, which is shown in figure 5.

In summary, we have studied a polyacetylene ring in the presence of the radial electric
field induced by an infinitely long line charge in the one-dimensional tight-binding model with
electron–phonon interaction. An effective gauge potential of the π -electron due to spin–field
interaction leads to Fröhlich-type superconductivity equivalent to the effect of a travelling
lattice wave. The flux of the gauge potential which results in a collective momentum shift of
electrons leads to a persistent current, which oscillates with respect to the AC flux and may be
observed experimentally with a mesoscopic polyacetylene tube.
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Figure 5. Periodic variation of the current density as a function of the AC flux.
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